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Einstein Relation for Quantum Systems 
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The Einstein relation between the diffusion constant f f  and the mobility u is 
discussed for various quantum systems, proceeding from the analysis of the 
general thermodynamic relation. Comparison between the kinematic and the 
thermodynamic derivation reveals the possibility to use the Einstein relation in 
investigations of the particle energy distribution in nonequilibrium conditions. 
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1. The Einstein relation, (1) that gives the connection between the 
diffusion constant ~ and the mobility u, had played an important role in 
formulation of the principles of the molecular-kinetic theory of matter 2 and 
still remains topical (see, for example, Refs. 2 and 3). It had allowed to find 
the size of molecules in liquids; moreover, it had established the relationship 
between the Brownian motion and the thermal motion of molecules in 
liquids. This relation is essential since it connects two different kinetic 
transport processes and therefore gives the possibility to determine one of the 
transport coefficients if the other is known or measured. 

The Einstein relation 

g.~--=kT (1) 
U 

was derived for particles that obey the classical Boltzmann statistics (T is 
the temperature, k is the Boltzmann constant; starting from Section 2 we put 
k=l). 

i Institute for Physical Problems, Kosygin str.2, Moscow, USSR. 
2 Einstein had repeatedly discussed the relationship between the mobility and the diffusion 

constant (see Ref. 1). 
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Let us first give the derivation of Eq. (1) that follows the work of 
Einstein. tl) If 1 cm 3 contains n particles of the soluted substance, then the 
volume per one particle is 

1 
= - -  (2) v 

n 

The force, acting on the soluted (chosen) particle due to the osmotic pressure 
p, i.e., is created by all other soluted particles, is equal to 

I f F = p dS = - Vp dv (3) 
(s) (v) 

where S is the surface, surrounding this particle, dS is the area element 
oriented along the normal to the surface, v is the volume per one particle. 
The variation of the pressure gradient Vp in the volume v is, naturally, taken 
to be small. Then 

F = --v Vp (4) 

The osmotic pressure that is created by the soluted particles is 

p = n k T  (5) 

According to (2), (4), and (5) in the isothermic case we have 

Vn 
F = - - k T - -  (6) 

n 

The velocity v of the spherical particle with the radius a, subjected to 
the action of the force F, is given, according to Stokes (see, e.g., Ref. 4), by 
the expression F / 6 n a t  l, where r/ is the viscosity of the solvent. Hence the 
mobility of the particle is 

u = (67rt/a)-I (V) 

On the other hand the current density of the soluted particles is J = v n .  By 
substituting the Stokes expression for v and Eq. (6) for the force F, and 
introducing the diffusion constant 9 ,  we have 

J =- - - 9  Vn ,  ~ = k T / 6 n r l a  (8) 

By comparing Eqs. (8) and (7) we find the relation (1). Eq. (8) that connects 
9 ,  r/, and a shows, that the measurement of the diffusion constant ~ and the 
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viscosity r/ allows to determine the size a of the molecule. Such 
measurements were performed by Perren in 1908. 

2. The relation (1) can be obtained in a more formal way. (5) 
Emergence of the current flow J of the solution particles is the consequence 
of the deviation from the equilibrium state that is caused by the dependence 
of the chemical potential p of the soluted particles on the coordinates. In the 
linear approximation we have 

8/~ (9) Ji =-Yik  8x k 

where Yik is the tensor of transport coefficients. The anisotropic form of (9) 
is used, since we want to apply further the Einstein relation to crystals. 
When the particles are in the external field, i.e., are subjected to the action of 
the force F = - V U ,  

=u0(n, 73 + u (10) 

where/~0 is the chemical potential at U -  = 0. According to (9) and (10) 

\7;,-n/T gx-Tx  - q 

By the definition, the tensor of diffusion constants is 

\ S n  / r  

while the tensor of the mobilities is 

00') 

1 
ui~, = Yik - -  (10") 

n 

Hence 

(au) (11) --~- U ik  ~ i k l'l ~-nn T 

We have omitted the subscript 0 for/1, keeping in mind, however, that/~ is 
the chemical potential at U =-0. 

For the dilute solution of noninteracting particles (cf. Ref. 6, Section 87) 

n 
U = T l n ~  (12) 
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(N is the number of the solvent particles per unit volume). It follows from 
(11) and (12) that the relation (1) connects the tensor of the mobilities with 
the tensor of diffusion constants and that the proportionality factor is a 
scalar, no matter where the soluted particles move (in the isotropic liquid or 
in the anisotropic crystal). 

We stress that for the dilute solution the relation (1) does not depend on 
statistics of the soluted particles. This is quite natural since Eq. (12) does not 
take into account the interaction between particles or the quantum 
correlations in their motion. 

Interaction between the soluted particles leads to the appearance in the 
chemical potential ~t of the additional term n/N which is linear in concen- 
tration (see Ref. 6); when such term is taken into account it modifies the 
Einstein relation (1): 

where fl=fl(p, T) is some function of pressure and temperature. Thus, 
investigation of the concentration dependence of the Einstein relation can be 
useful in studies of interaction between particles in a solution. Especially, we 
can mention the influence of the correlation of the ionic motion in elec- 
trolytes (or the charged particles in plasmas) that is caused by the Coulomb 
interaction and leads to the nonanalytic (square root) dependence of the 
mobility of ions on their concentration (Ref. 7, Section 26). Effects of mutual 
entrainment of ions with opposite charges (or ions and electrons) also 
require generalization of the Einstein relation (see Ref. 19). 

The relation (1) can be used to describe self-diffusion in solids. In order 
to proceed in this case, in the derivation of the Einstein relation, from 
Eq. (12) we should interpret p as the chemical potential of the mobile 
(activated) atoms or vacancies with the help of which the self-diffusion 
process is realized in solids. This example shows that the formal derivation 
of Eq. (11) requires certain commentaries that clarify the particular physical 
situation. 

3. Equation (11) permits to generalize the Einstein relation (1) [we 
have already used it in derivation of Eq. (13)]. The proportionality between 
the mobility and the diffusion constant is used in the physics of electron 
conductors since the calculation of the diffusion constant is much more 
illuminating than the calculation of the mobility (see, for example, Refs. 7, 
Section 90; 8, Section 26; and 9, Chap. 29). In recent years much attention 
was paid to some rather exotic (in any case, at a first glance) objects, such 
as quantum crystals with anomalously narrow bands of certain quasipar- 
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ticles (impuritons and the vacancy quasiparticles)(l~ the illuminated 
crystals that contain many excitons (under the appropriate conditions the 
exciton gas can become degenerate3)(m; ferro- and antiferromagnets where 
the high density of magnons is artificially maintained(14); finally, active 
research is carried out to create the degenerate Bose gas of hydrogen atoms 
in the presence of a magnetic field. ~15) All these phenomena make the 
problem of calculating the Einstein number g', for the degenerate gases of 
Fermi or Bose particles (or quasiparticles) highly interesting. According to 
Eqs. (11) and (1) the Einstein number is related to the derivative of the 
chemical potential 

(6#)  (14) Nn = n ~n r 

4. We start with our analysis from the case where the density n of 
particles (or quasiparticles) can be taken as a parameter that does not 
depend on temperature T. All the exotic objects listed above, as well as 
electrons in metals or doped semiconductors at low temperatures, satisfy 
such condition. Then the temperature dependence of g,n can be defined by the 
ratio 

f o  v(e)de /~-~-fo v(e)de (15) 
gn(T) = exp[(e--12)/T] • 1 /  ;u exp[(e--/a)/T] • 1 

where the chemical potential j2=g(n,  T) should be found from the 
normalization condition 

fo v(e) de exp[(e - I . t ) / T ]  + 1 = n (16) 

while the density of states v(e) is specified by the particular set-up of the 
problem. 

Usually v ( 0 ) = 0  (e.g., in three-dimensional gases of particles and 
quasiparticles). This allows to rewrite Eq. (15) in a slightly different form: 

f? v(e) de /fo ~ v'(e) de (17) 
gn(T) = e x p [ ( 8 - ~ ) / r ]  • 1 e x p [ ( ~ - ~ ) / r ]  • 1 

3 The investigation of the exciton motion under the action of the field of the nonhomogeneous 
deformation was performed in Ref. 12, while in Ref. 13 the role of the electronic wind in the 
motion of excitons was analyzed. 
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We discuss first the case of the temperatures that are high as compared 
with the degeneracy temperature T o (T > To). By expanding into powers of 
e x p [ ( e - ~ ) / T ]  w e  find from Eq. (17) 

g, (T)~  T l l • e"/r foV(~)e-2~/r de/ f~  v(e)e-~/r de I (18) 

where the chemical potential should be determined from the zeroth approx- 
imation 

n 
e u /T  ,~ 

Thus 

~n(T) ,,~ T 1 • v(e) e -2~/v de v(e) e- ~/r de (19) 

and we can see that for the Fermi gas (the upper sign) gn is greater than the 
classical value g~cl) = T, while for the Bose gas (the lower sign) g,  < N{~l). 
To make the expression (19) more explicit we have to specify v(e). For the 
gas of free particles 

P(g) - -  g 7-~r e 1/2 ~ a e  1/2 (20) 
7s g/-- 

where m is the particle mass, g = 2S + 1, S is the spin of a particle, and 

g . ( r )  r 1 + 

For the gas of quaslparticles (with a 
temperature satisfies the conditions 

Tqu a "G T ~ Ae 

Tqu a = ( 2 1 )  
m 

fixed density) Eq. (20) holds if 

(22) 

where Ae is the bandwidth. Certainly, this implies that the band should be 
sufficiently wide and that the number of particles inside it should be small: 
(nh2/m)(n/4g) 2/3 ~ Ae. 

When the band is narrow, another extremal situation is possible: 

T > Ae (23) 
.z~8 

Then, if the "band capacity" j o v(e) de is denoted as N a , 

~"n ~ T 1 • , n ~ N a ( 2 4 )  
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The inequality n ~ N A represents the condition under which the expansion in 
terms of e "/r  is valid: 

e "/r  ~ n e -  ~/T V(e) de ~ n v(e) de = - -  .~ 1 
Na 

It should be stressed that the correction to g~cl) appearing in Eq. (24), 
does not vanish with the increase of temperature [cf. Eq. (21)]. On the 
contrary, it becomes significant at high temperatures when the finiteness of 
the bandwidth is particularly essential. If density of particles satisfies the 
condition 

(m Ae)3/:  
n ~ g hi (25) 

then the nonclassical expression (24) should be used at higher temperatures 
(T>>Ae) ,  while the classical result (21) with a certain correction becomes 
valid only when the condition (22) is satisfied. 

5. Two-dimensional and one-dimensional gases have to be discussed 
in a separate way. Let us return to Eqs. (15) and (16) and assume n to be the 
number of particles per 1 cm 2 or 1 cm (correspondingly, n 2 and nl). Our 
discussion will be limited to the case when the dispersion law is quadratic. 
Then for the two-dimensional gas 

gm (26) 
v2 -- 2~h 2 

while for the one-dimensional gas 

1 
v l  - - -  ( 2 " 7 )  

2, h 

The independence of the density of states in the two-dimensional gas on 
energy allows to obtain the value of its chemical potential P2 for an arbitrary 
temperature: 

(i) for fermions, 

~t{ = T l n ( e r ~ a / r -  1), 

(ii) for bosons, 

T~2) = 27ch2n2/gm (28) q u a  

T (2) / T x  #~= Tln(1 - - e -  qo~- ) (28') 
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Note that the two-dimensional gas of bosons (and, hence, obviously the 
one-dimensional gas) does not exhibit the Bose-Einstein condensation(6): at 
T-~ 0 the chemical potential 

According to (14), (28), and (28') 

l (2) T (2) /T ~. Tqua/( 1 --qua- ) for fermions ~o(n2) = -- e -  
(2) r~)dr (29) 

TquJ (e  . -- 1) for bosons 

The temperature dependence of the Einstein number in the case of two- 
dimensional gas is shown in Fig. 1, 

For the one-dimensional gas at high temperatures 

1 / T ( 1 ) \ l / 2  I g(1)~  T 1 + k 2 - ~  -) , T >  -qu. T(1) = 16~2h2n/g 2m (30) 

As always, the uppers sign refers to fermions and the lower one refers to 
bosons. At low temperatures 

~,(1) = t(1/4) T~lu)a for  f e rmions  (31) 
n 2 2 (1) f 8~r T / T q u  a for bosons 

Qualitatively the dependence ~(1) = ~,~(1)(T ) resembles ~2)(T).  The principal 
difference is that the temperature dependence of fin for bosons at T-~ 0 is of 

~ T(2) p T (2) /T the power type (~o(1) T2), and not exponential g-(2) --qua- qua- . 

/ /  
/ /  

D- 

T 
Fig. 1. Temperature dependence of the Einstein number for two-dimensional quantum gases 
(1, fermions; 2, bosons; the dashed line shows the classical value c~ g,  = T). 
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6. Let us return to the three-dimensional gas. Behavior of fermions 
and bosons at low temperatures is drastically different and, naturally, it is 
revealed in the temperature dependence of the Einstein number ~e. In the 
case of fermions at T ~ Tqu a ~ ep 

n_ 1- -  (32) 
g" = vp 6 \ v / p j  

Here all the variables, such as the density of states v and its derivatives v' 
and v", are taken at the Fermi energy e F (defined (8) by the condition N(eF) --= 
fo ~' v(e) = n). v e (see 6) de If  1/2 then Ref. 

2 ( ~ T ~  
ge = 3 -  e~. 1 + ~ ] ,  e F = (2rch) 2 n2/3/2m(47gg) 2/3 (33) 

These expressions are valid, as well, for the band electrons, if e F is close to 
the bottom of the band were v ~ el/2. When the Fermi energy is close to top 
of the band, it would be natural to use the description in terms of the 
"holes." For holes the Einstein number is 

g,~ = --nh cq/a (33') 
cqn h 

where n h is the density of holes (see Ref. 9). Here again ~ grows with the 
increase of temperature. Since n h = N a -- n 4= n we have g'~ 4= ~"n. Their 
difference follows from the definition of the mobility (10"). If  we use the 
conductivity instead of the mobility, this ambiguity would disappear. 

At low temperatures (T ~ eF) the dependence of ~", on magnetic field is 
also of interest. We would not dwell here on this question. Note only that the 
Einstein number should experience the thermodynamic oscillations 
analogous to the de-Haas-van-Alphen effect, (s) while both the diffusion 
constant ~ and the mobility u can have some additional oscillatory features, 
specific for the transport coefficients (for instance, this happens under the 
conditions of the magnetic breakdown ~2~ where the spectrum of oscillations 
of the conductivity are more rich than that of the magnetic susceptibility). 

7. In the case of bosons at temperatures lower than the temperature 
TBE of Bose-Einstein condensation the chemical potential is equal to zero.(6) 
At T = TBE the Einstein number vanishes together with p. 

Having in mind the gas of quasiparticles, it is interesting to study the 
Bose-Einstein condensation and properties of g', without any particular 
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assumption about the dependence of the density of states on energy. The 
condensation temperature ThE is defined as the root of the equation 

; ~  v(e) d~ 
rt = J e ~/TBE 1 (34) 

0 

which, as it seems, always has solutions if v(0) = 0 (this holds in the three- 
dimensional case). The dependence of /'BE on n is very sensible to the 
relationship between the band capacity N a and the density of particles n. 
When the number of particles is small, ThE ~ At, the density of states v(e) 
can be approximated by its form near the lower edge of the band 
[v(e) ~ e l/E] and the limits of integration can be put infinite. Naturally, this 
results in the "usual" value of the temperature of Bose-Einstein 
condensation (6) 

( zcEn )2/3 h 2 
= - -  a = F(3/2) r z 1.3 ~ (35) TRE \ g - - - ~  / m ' 

(here m is the effective mass). At high densities of quasiparticles ThE >> At 
and we can expand the exponent in (34) into a series. Then 

/fo ~" v(e) de 
ThE ~ n >> At (36) 

e 

By taking the derivative of (16) in respect to temperture, we have 

dfl f: v@)e (e-u)/T de l f :  v ( e ) ( e - p ) e  '~-",/r de 
dT  (e ( ~ - " ) / r -  1) 2 - T (e(~_u)/r - 1) 2 (37) 

It is seen that at p ~  0, i.e., for T-* TBE, the coefficient at dct/dT 
diverges at lower limit, while the integral in the right side of the above 
equation remains finite at r = 0. After substitution of v(e) by the expression 
(20), we calculate the coefficient at dlu/dT 

o~ v(e) e (~-")/r de ~ ~ T~Ea (~ X 1/2 dx zr T~E ( 
;0 ( ~ - ~ 7 ~ - 1 7  lul x/~ ~0 ( x + l )  2 2 [~1 ~/~ 

a 

Hence, taking into account (37), 

1 d)u I _ C ,  C =  2 1 i ~ v(e)ede (38) )t] 1/2 d r  ~r r3Ea Jo (e "/rB~- 1) 2 

Consequently, 

/~ ~ --(1/4) Ca(T - TBE) 2, T ~  TBE (39) 
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In the same approximation [according to (14)] 

1 2 dTBE (40) g . = B ( T -  T.E), B=--~C --~U-n n 

i.e., the Einstein number linearily vanishes a s  T--+TBE. At TBE~Ae 
[see (35)] the coefficient B is constant and does not depend on the 
parameters of the solid 

B -  472 ~o~ x 3 / ;  dx 
- ~ - ,  where Y=t0 ( e X l ) 2 - r ( 5 ) ( ~ ( 3 ) - ~ ( 5 ) )  

at TBE > Ae [see (36)] the coefficient B is determined by the structure of the 
band 

2 (1 fA~v(e)de) 2 1 (41) 
B ~ -  \-a- 0 e TBE 

We shall not discuss here the realizability of Bose-Einstein condensation in 
particular physical systems. In our calculations which yield Eqs. (31)-(41), 
we do not take into account the interaction of bosons (and the fluctuations of 
gas density too); hence they can be useful only under conditions when 
interaction and fluctuations are not essential. In close vicinity of the 
temperature of Bose-Einstein condensation such interactions and fluc- 
tuations surely play a decisive role in real physical systems and Eqs. 
(34)-(41) demonstrate only the tendency in the behavior of a physical 
system with decreasing temperature. [For example, according to Eq. (36) the 
temperature /'BE increases faster with growth of the density of quasiparticles 
n than one could expect, judging from the familiar "usual" relation (35), etc.] 

8. Until now we have assumed that the density of particles (or 
quasiparticles) n is an independent on temperature parameter that determines 
the value of chemical potential /~ [see (16)]. In the case of solids the 
situations are frequently encountered when the number of quasiparticles 
depends on temperature, and chemical potential is determined, for example, 
by the neutrality condition. This is the peculiar situation in an electron-hole 
semiconductor. Let us denote the density of electrons as ne and the density of 
holes as n h. Although electrons and holes have common chemical potential 
~, their Einstein numbers are different (see Ref. 9, Chap. 29) 

~,~ = ne c3r h c3~ (42) 
c~n--~' ~e = _nh c~nh 
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The temperature dependence of gee and ~"~ can be calculated most 
conveniently by using the formulae analogous to Eqs.(15) and (17) 
assuming g~,h= +ne,h(~lu/~ne,h)" 

The difference consists only in the temperature dependence of/~ = r 
We shall analyze several special cases that will help us to find out which 
information the temperature dependence of Einstein numbers does carry. 

We discuss first an electronic semiconductor of the n type with the 
energetic structure shown in Fig. 2; the donor level with the energy -eg 
(eg > 0) has the 6-like density of states, at T = 0 it contains rig electrons per 
cm 3. As a result of thermal excitation, electrons appear in the conduction 
band with the width Ae ~> T. This validates the use of Eq. (20), where m 
should be considered, certainly, as an effective mass. The distance from the 
conduction band to the valency band is so large that excitation from the 
valency band can be completely neglected. 

e - -  e To calculate g . -  ~e.(T) we shall use Eq. (17) (with the upper sign) 
and, instead of the normalization condition (16), the neutrality condition 

n~ (~  v~(~) d~ 
(43) e (~g+")/r + 1 - - ) 0  e (e-")/r + 1 

will be taken for determination of /*=/,(T).  At both low temperatures 
( T ~  gg) and at high temperatures (T>> eg, hZn}/a/m) electrons can be with 
good accuracy described by the classical statistics, 

~':(T) ~ T ( I + + e "/r) 

/ \  
I 

Fig. 2. 

9 

/ 
0 f_. 

Energetic structure of semiconductors of the n type. 
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[see (18)], and instead of/~ we should substitute the approximate value of the 
chemical potential: 

3 T~ 
- - ~ e e  +-~- Tln  T ,  

. _lnL 
T '  

Hence 

Tg = 21/3zCnZg/3h2/m, T ~ eg 

r>r~ 

g ' e ~ T  1 +  , T>>eg, Tg 

(44) 

Here 7~g differs from Tg by a numerical factor of the order of unity. Note that 
in this case the classical Einstein relation is especially well satisfied at low 
temperatures: owing to the existence of a gap the correction to the classical 
value at T <  eg is exponentially small. 

In the intermediate interval of temperatures ~ee(T) can essentially differ 
from the classical value. The character of the function J - ( T ) =  ~ e / g ~ I =  
{ e ( T ) / T  depends on the relationship between Tg and eg ; this function can be 
easily found at various values of parameters in Eq. (43). If positivity of the 
chemical potential is taken as a qualitative indication of degeneracy of the 
electron gas the quantitative criterion of existence of a degeneracy interval 
can be derived. According to (43), the chemical potential/~ vanishes at the 
temperature T o = Xeg where x is determined by the equation 

e 1/x + 1 - x3/2 

Depending on the ratio eg/Tg, this equation has either two solutions (x I and 
x2) or none. If Tg > eg there are always two solutions [xl ~ 2/(3 ln(Tg/eg)), 
x 2 ~ Tj22/36g], and a comparatively wide degeneracy interval 
(XlEg < T < x2eg) is present, inside which g,~(T) differs considerably from 

cl 
~e n = T. On the boundaries of such an interval, according to (17), the ratio 
~ee/~l  is close to 2. 

h i - -  n 

In the case of the intrinsic semiconductor (its energy structure is shown 
in Fig. 3) the chemical potential p = p ( T )  is determined by the condition of 
equality of electron and hole numbers: 

f (45) 
, e ~ - " ) / r +  1 - -o0 e("-~)/r + 1 

822/38/1-2-23 
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L- 

Fig. 3. Energetic structure of an intrinsic semiconductor (To(e) is the density of states in the 
conduction band, v~(~) is the density of states in the valency band). 

the notations are given in Fig. 3, for vc(e ) and v~(e) we have used Eq. (20) 
with an effective mass of an electron and a hole, correspondingly Ivy(e)= 
a~(-eg-e)l /2].  At low temperatures (T~eg)  the Einstein numbers for 
electrons and holes are close to the classical value, i.e., the difference 
g~'h/T-- 1 is exponentielly small. Possibility (or impossibility) of significant 
deviations of ~,~,h from the classical value at comparatively high 
temperatures is related to possibility (or impossibility) of degeneracy of 
electron or hole gases. If m c < m~, then the temperature can be found at 
which/2e would vanish and this would, certainly, influence quantities ~"] and 
Y~ (see the remarks above). 

We conclude this section with discussion of the gapless 
semiconductor(16); here the equation for determination of/2 coincides with 
Eq. (45) with eg= 0. Assuming that the effective masses of electrons and 
holes are different, we have 

eU/reX + 1 e-u/rex + 1 

Hence, /2 is the linear function of temperature (/2 = s"T), and the propor- 
tionality factor is determined by the ratio of effective masses: Y> 0 for 
m~ > m c and g < 0 for m~ < rnc. For m c = m~ the chemical potential is equal 
to zero and g,].h is approximately twice greater than the classical value [see 
Eq. (17)1. 
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9. Until now we have assumed that the diffusing particles (or 
quasiparticles) represent an ideal gas [the exception is in the case 
corresponding to Eq. (13)]. In the general case it is impossible to take into 
account interactions between particles and special assumptions should be 
made. If the particles are fermions, then at low temperatures the most 
important role in their interactions plays Landau's Fermi-liquid 
interaction, ~17) described by the correlation functionf(p, p')  where p and p' 
are the momenta of interacting particles. The Einstein number for fermions 
(e.g., for atoms of He 3 diffusing through He 4) can be easily expressed in 
terms of the sound velocity in the Fermi-particles gas, taking into account 
their Fermi-liquid interaction. Indeed [see, e.g., Ref. 18, Eq. (66.2)] 

n c3~ (47) c3n = m s  2 

where s is a sound velocity in the Fermi-liquid, rn is a mass of particles, 
unrenormalized by interaction. In the same reference [Ref. 18, Eq. (66.9)] 
the expression is given that defines the dependence of a squared speed 
velocity on the correlation function f (p ,  p'). Eq. (47) generalizes Eq. (33) at 
T = O .  

10. If a system of mobile particles in a condensed medium is not in 
the thermodynamic equilibrium state (e.g., hot electrons in a semiconductor), 
the thermodynamic relations cannot be applied. However, we can estimate 
the Einstein number from the kinetic treatment. By the order of magnitude 

"-~ l @ ) ,  u ~ l / { p )  (48) 

where l is the mean free path length of particles, and angular brackets mean 
averaging over the quasi-equilibrium distribution. Thus 

- - ~  @ ) { p )  ~ @ )  (49) 
u 

i.e., the Einstein number is determined by the average energy of diffusing 
particles. Its measurement can serve as a source of information about the 
energy distribution of diffusing particles. 

11. We do not intend to discuss in a detailed way the possibilities 
(and, of more importance, difficulties) of measurements of the mobility and 
the diffusion constant of uncharged particles or quasiparticles. However, we 
would like to make several remarks. If the number of particles (or quasipar- 
ticles) is conserved, their equilibrium distribution function is 
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{exp[ ( e -p ) /T ]  + 1} -1. It is clear that at T = c o n s t  the flow of quasipar- 
ticles can be created only if Vp 4= 0. If Vp is due to the nonhomogeneous 
distribution of particles (or quasiparticles), then Vp = (c~/a/t3n) Vn and there 
is a diffusive flow, while if Vn---0, then -Vp  should be interpreted as a 
generalized force F and this allows to determine the mobility. 

Creation of the flow of uncharged particles (or quasiparticles) at Vn = 0 
is, seemingly, limited by existence (or absence) of the permanent source of 
particles (that should be included into the circuit, an element of which should 
be the investigated body), and not by the difficulty of action on an individual 
particle (or quasiparticle). For instance, if the energy of a particle (or 
quasiparticle) with the momentum p is 

~(p) = Co + ~(p) (50) 

then - Vc  0 is the force, and c o plays the role of a potential energy ]cf. 
Eq. (10)]. The spectrum of magnons in a ferromagnet without account for 
the relativistic interactions is described by such an expression: Co=PBH, 
where H is a magnetic field and /1 B is the Bohr magneton. The same 
spectrum is realized for atoms of hydrogen, polarized by the magnetic field. 
Even if the separate measurement of ~? and u turns out to be difficult, 
knowledge of the Einstein number is necessary in formulation of 
macroscopic equations that describe quasihydrodynamical processes in 
solids (in analogy with the description of motion of electrons, see, e.g., 
Ref. 9). 

For many years I. M. Lifshitz had developed the concept of quasipar- 
ticles, repeatedly stressing similarities between quasiparticles and common 
particles and at the same time discovering the qualitative peculiarities in the 
behavior of quasiparticles that are revealed in properties of solids. We hope " 
that the present paper belongs to that direction of the solid state theory 
which is forever associated with the name of Ilya Mikhailovich. 
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